
 
 

 

QA Guidelines 
 

QA Best Practices with Apptimize 1 

Overview 2 

General best practices 3 

Preview Variants 4 

Advantages 4 

Limitations 4 

How to Pair Your Device 4 

The Preview Variants Modal 5 

What are other customers doing? 6 

Programmatic APIs for QA 7 

Advantages 7 

Limitations 7 

Useful APIs 7 

Programmatically force variants 8 

Getting the variant ids 8 

Managing the verbosity of logs 9 

What other customers are doing? 9 

Targeting based QA 10 

Advantages 10 

Limitations 10 

Examples 10 

Use custom attributes for targeting 10 

Use pilot groups for targeting 10 

Use version numbers for targeting 11 

 

   

 



 
 

Overview 

Like any other update you make to your app, it is very important to also test the experiments 
and features that you deliver to your end-users using Apptimize. This document highlights some 
of the common approaches that our customers take to QA their projects in Apptimize. 
 
The 3 main QA approaches described in this document are: 

1. Using Preview Variants 
2. Using programmatic APIs to force variants 
3. Using selective targeting to launch projects internally within the team 

 
We recommend using these tools and resources to test the behavior of any project before 
launching it to the end-users. Some of the common things to look for are: 

1. Verify that the ​participation for the experiment is recorded ​where you expect the user 
to be exposed to the experiment 

2. Verify that the ​events are getting picked​ up by the Apptimize SDK 
3. Verify that the ​participation gets recorded before the events ​relevant to the 

experiment 
4. Verify that the ​metadata is received in time​ to deliver the experiment 
5. Verify that visual edits display properly across a variety of devices and resolutions 

   



 
 

General best practices 

● As a general best practice, we always recommend that customers create separate apps 
in Apptimize for their ​Staging and Production environments​. This allows them to 
freely and extensively test out experiments and feature flags without worrying about any 
adverse effects on the end-user experience. This also keeps the production dashboard 
clean and manageable, and prevent results generated during testing sessions from 
polluting results from end-users 

 
● For teams that have the necessary development resources or automation processes, we 

highly ​recommend always using the programmatic approach​ for QA along with using 
Preview Variants to test the variants. 

 
● It is recommended to make use of the ​tags and notes​ fields as much as possible and to 

integrate updating these fields into the day-to-day experimentation process. These fields 
can be used to store Jira ticket numbers and links to specs so that it is easier to track 
and reference the stories related to the experiment or feature flag. 

 
● It is recommended to use ​multiple devices​ to test out an experiment before releasing it 

to the end-users, especially for visual experiments. It is a good idea to use devices with 
different screen sizes to verify that the changes appear as expected on all screen sizes.  

 
● It is crucial to verify that ​participation events are reported where expected​ in the app 

and that any events that are important to measure the success of the experiment are 
recorded after the participation event. Apptimize results only show conversions for 
events that occured after the user has participated in the experiment. 

 
● Ideally, you should always ​do all your QA in your Staging environment ​but if you 

were to do it in the production dashboard in Apptimize, remember to create a fresh copy 
of the experiment and archive the original one so that any results introduced during QA 
are not a part of the actual experiment results. 

 
 
 
 

   



 
 

Preview Variants 

Preview Variants is a tool that allows you to pair your device to the Apptimize dashboard and 
test the variant on your actual device so you can verify that the variants are performing as you 
expect them to.  
 
When connected to Preview Variants, it provides a visual representation of the variant on the 
Apptimize dashboard via mirroring, a participation indicator, a section to verify the targeting and 
representation of the captured events. We recommend this approach of testing for simple 
visual/UI debugging (especially if the Visual Editor was used to create variants) and/or 
event-tracking.  

Advantages 

● Zero coding involved  
● Works hand-in-hand with previewing changes made in the Visual Editor 

Limitations 

● You can only preview one variant at a time. (i.e. while using this tool, all your 
other active experiments and feature flags will be disabled on your device) 

● The variant is applied to the device as an Instant Update instead of an 
experiment. Hence, APIs like testInfo, getVariants or onExperimentRunListener 
do not work with Preview Variants.  

 

How to Pair Your Device 

The Preview Variants section can be found on Step 4, ​Target & Launch​, of the Experiment 
set-up process: 
 

 
 

Assuming you’ve configured your visual/code changes for variants (from Step 3), you can then 
scroll down to Preview Variants from the Target & Launch page and find any eligible devices for 
pairing.  
 



 
 

 
 
If you are using a ​development build​ of your app, you should see your device available for 
Preview Variants as soon as you open your app. If you do not see any devices available, please 
check the following: 

● Ensure that you’ve followed the steps on the Install page and verify that the Apptimize 
SDK is properly installed 

● Make sure that your unique application key (also found on the Install page of your 
experiment) is implemented in your app 

● Make sure your application is open and running 
● For additional details see ​this Support FAQ  

 
If you would like to test your app using a ​production build or a signed build​, you will need a 
unique pairing token. You can obtain the pairing token by emailing ​support@apptimize.com​ or 
your CSM. 
 
Once you have your pairing token, you can just copy the token to the clipboard before launching 
the app (remember to kill and relaunch if app is already open) to pair with the dashboard. 

 

The Preview Variants Modal 

Once you’re able to select a device, choose a variant to preview from the dropdown. This will 
launch a floating window similar to below: 

http://support.apptimize.com/customer/en/portal/articles/2291323-pairing-problems---i-don-t-see-a-mirror-of-my-device-when-i-click-add-variant-
mailto:support@apptimize.com


 
 

 
 

● The experiment name and variant name are displayed in the top left 
● Toggle “​Mirror App​” to mirror the display of your currently paired device 
● Click the “​Refresh​” icon to refresh the display 
● On the left-hand side, the participant’s “​Status​” will be displayed.  

○ For visual experiments the status will change to “Participating” if you are on the 
view that includes the variant, for code block experiments participation is 
triggered when the code block is executed, and for Dynamic Variable 
experiments it occurs when a dynamic variable involved in the experiment has its 
value queried. This is confirmation that participation is recorded. 

● The ​“Targets” ​section will display the targeting for the experiment  
○ If you have any targeting criteria, the values (for example, App Version: 2.0) as 

well as an indication of whether the current device meets it will be displayed here. 
Participation cannot be triggered unless your device meets all of the experiments 
targeting criteria. 

● An ​“Events”​ section will appear once you trigger an event in your app 
○ Any triggered events will appear here with the associated value (if available) will 

be displayed in this section  
○ Any events with a “to be imported” status signify that the events are successfully 

detected and will be imported approximately one hour after the event is triggered 
on a device which is enrolled in a live experiment.  

What are other customers doing? 

Preview Variants is a useful tool for front-end/UI testing. Product managers often prefer to do 
preliminary testing with the tool to confirm variants/events are appearing as they should - this is 
straightforward and fast due to the lack of coding required. 
For complex QA testing beyond visual elements, our clients prefer to use our programmatic or 
targeting-based QA. These methods are outlined in the remainder of this document.   



 
 

Programmatic APIs for QA 

Advantages 

● Variants from multiple experiments can be forced simultaneously 
● The (forced) state of the variant(s) persists across app kills and relaunches 
● Data exporting APIs are available to be used (unlike Preview Variants) 
● Ideal for functional testing as well as unit testing 

Limitations 

● Requires development 
● The experiment needs to be running 

Useful APIs 

Programmatically force variants 

The forceVariant APIs provide you with a programmatic way to force certain variants to your 
device using the variant id.  
 
Once forceVariant is called, Apptimize is placed in a special test mode where it will only enable 
variants that are forced by forceVariant. All other Feature Flags, A/B Experiments and Instant 
Updates will appear disabled/off unless a specific variant is forced for those projects. You need 
to call forceVariant for each of the variants you want to apply. So, if you have 3 experiments and 
you want to see how the variants from all 3 interact with each other, you must call the 
forceVariant API for one of the variants from all 3 experiments. 
 
Note: Preview Variant will not work when there are forced variant(s) on a paired device. This is 
because Preview Variant works by sending an instant update to the paired device. 
 

iOS APIs 

(void)forceVariant:(NSInteger)variantID 
Force the variant with the given ID to be enabled. Filter logic is ignored. No other experiments or 
instant updates through regular means will be applied if a variant is forced. 
 
If called multiple times, the set of variantIDs that are set via forceVariant are all forced. If an ID 
is invalid it does nothing, but other experiments / instant updates are still off. 
 
(void)clearForcedVariant:(NSInteger)variantID 
Disables the variant with the given ID. Does nothing if the variant is not forced. 

https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Classes/Apptimize.html#/c:objc(cs)Apptimize(cm)forceVariant:
https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Classes/Apptimize.html#/c:objc(cs)Apptimize(cm)clearForcedVariant:


 
 

 
(void)clearAllForcedVariants 
Disables all variants which were forced by the forceVariant call. 

Android APIs 

public static void forceVariant(long variantID) 
Force the variant with the given ID to be enabled. Filter logic is ignored. No other experiments or 
instant updates through regular means will be applied if a variant is forced. 
 
If called multiple times, the set of variantIDs that are set via forceVariant are all forced. If an ID 
is invalid it does nothing, but other experiments / instant updates are still off. 
 
public static void clearForcedVariant(long variantID) 
Disables the variant with the given ID. Does nothing if the variant is not forced. 
 
public static void clearAllForcedVariants() 
Disables all variants which were forced by the forceVariant call. 

Getting the variant ids 

There are 2 ways to get the variant ID 
1. You can use the getVariants API (​iOS​ and ​Android​) to retrieve the information about all 

the variants of the currently active projects. 
2. Alternatively, you can view the id for a specific variant in the experiment configuration in 

the configure step or in the results, next to the variant name.  
 
Note that if you do not see the variant ids in the dashboard, you can enable the feature in your 
‘Organization Details’ view, by checking the ‘Display Variant Id’ option in the detail view of the 
app. 
 

 

https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Classes/Apptimize.html#/c:objc(cs)Apptimize(cm)clearAllForcedVariants
https://sdk.apptimize.com/android/javadocs/javadoc-2.13.10/com/apptimize/Apptimize.html#forceVariant(java.lang.Long)
https://sdk.apptimize.com/android/javadocs/javadoc-2.13.10/com/apptimize/Apptimize.html#clearForcedVariant(java.lang.Long)
https://sdk.apptimize.com/android/javadocs/javadoc-2.13.10/com/apptimize/Apptimize.html#clearAllForcedVariants()
https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Classes/Apptimize.html#/c:objc(cs)Apptimize(cm)getVariants
https://sdk.apptimize.com/android/javadocs/javadoc-2.13.10/com/apptimize/Apptimize.html#getVariants()


 
 

Managing the verbosity of logs 

You have the option of controlling the verbosity of Apptimize logs, using the Log Level option. 
This option can be configured during the Apptimize setup call to get detailed logs that can be 
useful for troubleshooting. 
 
iOS API 
Android API 
 
Note that in iOS, this option can also be set in the plist using the property ​ApptimizeLogLevel​. 

What other customers are doing? 

Some of our customers have implemented a QA console by binding the above API calls with 
some basic UI (toggles, buttons for clearing variants, etc). In the testing phase they append their 
developer build with this console to allow for easy testing without having to constantly amend 
the application code. 
We currently have a work-in-progress build of a console that accomplishes some basic 
forceVariant functionality. Note that this is a feature we are presently refining based on QA 
needs.   

https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Classes/Apptimize.html#/c:objc(cs)Apptimize(cm)setLogLevel:
https://sdk.apptimize.com/android/javadocs/javadoc-2.13.10/com/apptimize/ApptimizeOptions.html#setLogLevel(com.apptimize.ApptimizeOptions.LogLevel)
https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Constants.html#/c:@ApptimizeLogLevelOption


 
 

Targeting based QA 

Sometimes the best way to QA is to experience a variant exactly like an end-user would 
experience it. That way you could verify experiencial things that might otherwise get missed in 
regular testing. This is also good to check that the experiment does not introduce any lag in the 
app or that the results are being collected and displayed as expected.  
 
This approach specifically works well for customers with larger QA teams where it might be 
challenging to distribute development builds or teach everyone how to use pairing tokens. This 
can be achieved by using some creative targeting criteria. Using this approach in conjunction 
with verbose logging makes it very simple to troubleshoot experiments and feature flags. 

Advantages 

● Easy set up 
● Closest experience to end-users 
● Allows QAing multiple experiments simultaneously 
● Results will be reflected in the Apptimize dashboard 

Limitations 

● Can only troubleshoot with logs 
● Since the assignment to the test happens in a way similar to how it will happen once the 

experiment is launched to your end-users, it is not possible to control which variant to 
push to device. However, you could select a winning variant if you want to test a specific 
variant. 

Examples 

Use Custom Attributes for targeting 

You can set any user characteristic that is available in your app as a Custom Attribute to target 
your user cohorts.  
 
For example: You can use the email used to sign in, to set a Custom Attribute that tells you if a 
user is an employee of the company and target the experiment to be delivered to them. 
 
Link to Documentation: ​Custom Attributes 

Use Pilot Groups for targeting 

One of the most common ways customers use to target experiments to the internal team is 
using Pilot Groups. Groups can be created in Apptimize based on the values of a pilot targeting 
id that can be set in your app. The pilot targeting id can be any attribute in your app and can be 

https://apptimize.com/docs/abexperiments/targeting.html#custom-attributes


 
 

set up very easily. Once the pilot targeting id is set in the code, we recommend creating a group 
for your QA team by uploading their ids to the dashboard. This way every time you want to send 
an experiment to only your internal team, you can easily do so by just adding the group to the 
targeting criteria. 
 
Note that pilot groups are independent of targeting. Pilot users will always see your experiment 
or feature flag, regardless of whether they meet other specified targeting or version criteria.  
 
Link to Product Documentation: ​Pilot Groups 
Link to SDK Documentation: setPilotTargetingID function (​iOS​ / ​Android​). 

Use version numbers for targeting 

One of the easiest ways to target only the QA team for an experiment even if you do not have 
custom attribute or pilot targeting id set up in your code is to target based on app version. 
Usually the app version in QA is higher than that in the AppStore or PlayStore. So you can 
target the QA team for an experiment just by simply setting the targeting for app version to be 
greater than the current version of the app in the AppStore/PlayStore. Keep in mind that if you 
use this method, you must make sure to update the targeting criteria if an update to you app is 
released. 
 
 
 
 

https://apptimize.com/docs/abexperiments/targeting.html#groups
https://sdk.apptimize.com/ios/appledocs/appledoc-2.20.24/Classes/Apptimize.html#/c:objc(cs)Apptimize(cm)setPilotTargetingID:
https://sdk.apptimize.com/android/javadocs/javadoc-2.13.10/com/apptimize/Apptimize.html#setPilotTargetingId(java.lang.String)

